Thursday, 13 August 2015




BASIC FORMULA

1. (a+b) 2=a2+b2+2ab 
    
2. (a−b) 2=a2+b2−2ab

3. (a +b) 2− (a−b) 2=4ab  
                      
4. (a+b) 2+ (a−b) 2=2(a2+b2)

5. (a2–b2)= (a+b) (a−b) 
                   
6. (a+b+c) 2=a2+b2+c2+2(ab+bc+ca)

7. (a3+b3) = (a+b) (a2−ab+b2)   

8. (a3–b3) = (a−b) (a2+ab+b2)

9. (a3+b3+c3−3abc)= (a+b+c) (a2+b2+c2−ab−bc−ca)

10. If a+b+c=0, then a3+b3+c3=3abc.


TYPES OF NUMBERS

1. Natural Numbers:
Counting numbers 1, 2, 3, 4, 5 … are called natural numbers

2. Whole Numbers:
All counting numbers together with zero form the set of whole numbers.
Thus,
(I) 0 is the only whole number which is not a natural number.
(II) Every natural number is a whole number.

3. Integers:

  All  natural  numbers,  0  and  negatives  of  counting  numbers i.e.,…,−3,−2,−1,0,1,2,3,….. together form the set of integers.
(i) Positive Integers: 1, 2, 3, 4….. is the set of all positive integers.
(ii) Negative Integers: −1, −2, −3… is the set of all negative integers.
(iii) Non-Positive and Non-Negative Integers: 0 is neither positive nor negative.
So,  0,1,2,3,….  represents  the  set  of  non-negative  integers, 
while 0,−1,−2,−3,….. represents the set of non-positive integers.

4. Even Numbers:
A number divisible by 2 is called an even number, ex. 2, 4, 6, 8, etc.

5. Odd Numbers:
A number not divisible by 2 is called an odd number. e.g. 1, 3, 5, 7, 9, 11 etc.

6. Prime Numbers:
A number greater than 1 is called a prime number, if it has exactly two factors, namely 1 and the number itself.   e.g  2

7. Composite Numbers:
Numbers  greater  than  1  which  are  not  prime,  are  known  as composite numbers, e.g., 4,6,8,9,10,12.
Note:
(i) 1 is neither prime nor composite.
(ii) 2 is the only even number which is prime.
(iii) There are 25 prime numbers between 1 and 100.
REMAINDER AND QUOTIENT:

"The remainder is r when p is divided by k" means p=kq+r the integer q is called the quotient.

EVEN ,ODD NUMBERS

A number n is even if the remainder is zero when n is divided by 2: n=2z+ 0 or n=2z.
A number n is odd if the remainder is one when n is divided by 2: n=2z+1.
even X even = even
odd X odd = odd
even X odd = even
even + even = even
odd + odd = even
even + odd = odd



                                  Some important tricks
1 + 2 + 3 + 4 + 5 + … + n = n(n + 1)/2
(12 + 22 + 32 + ..... + n2) = n ( n + 1 ) (2n + 1) / 6
(13 + 23 + 33 + ..... + n3) = (n(n + 1)/ 2)2
Sum of first n odd numbers = n2
Sum of first n even numbers = n (n + 1)

                    For square and square root or cube and cube root
You must remind square from number 1 to 30  and cube at least from number 1 to 15

Square List                                                                                                   Cube List 
 

1 1
1 1
2 4
2 8
3 9
3 27
4 16
4 64
5 25
5 125
6 36
6 216
7 49
7 343
8 64
8 512
9 81
9 729
10 100
10 1000
11 121
11 1331
12 144
12 1728
13 169
13 2197
14 196
14 2744
15 225
15 3375
16 256


17 289


18 324


19 361


20 400


21 441


22 484


23 529


24 576


25 625


26 676


27 729


28 784


29 841


30 900









Also  You must remind  to  1 to 20  table multiplication





TABLES (from 1 TO 20)

1x1=1
2xl=2
3x1=3
4xl=4
5xl=5
1x2=2
2x2=4
3x2=6
4x2=8
5x2=10
1x3=3
2x3=6
3x3=9
4x3=12
5x3=15
1x4=4
2x4=8
3x4=12
4x4=16
5x4=20
1x5=5
2x5=10
3x5=15
4x5=20
5x5=25
1x6=6
2x6=12
3x6=18
4x6=24
5x6=30
1x7=7
2x7=14
3x7=21
4x7=28
5x7=35
1x8=8
2x8=16
3x8=24
4x8=32
5x8=40
1x9=9
2x9=18
3x9=27
4x9=36
5x9=45
1x10=10
2xlO=20
3xlO=30
4x10=40
5xlO=20
6x1=6
7x1=7
8x1=8
9xl=9
lOx1=10
6x2=12
7x2=14
8x2=16
9x2=18
10x2=20
6x3=18
7x3=21
8x3=24
9x3=27
10x3=30
6x4=24
7x4=28
8x4=32
9x4=36
10x4=40
6x5=30
7x5=35
8x5=40
9x5=45
10x5=50
6x6=36
7x6=42
8x6=48
9x6=54
10x6=60
6x7=42
7x7=49
8x7=56
9x7=63
10x7=70
6x8=48
7x8=56
8x8=64
9x8=72
10x8=80
6x9=54
7x9=63
8x9=72
9x9=81
lOx9=90
6x10=60
7x10=70
8x10=80
9xlO=90
10x10=100
11x1=11
12xl=12
13x1=13
14x1=14
15x1=15
11x2=22
12x2=24
13x2=26
14x2=28
15x2=30
11x3=33
12x3=36
13x3=39
14x3=42
15x3=45
11x4=44
12x4=48
13x4=52
14x4=56
15x4=60
11x5=55
12x5=60
13x5=65
14x5=70
15x5=75
11x6=66
12x6=72
13x6=78
14x6=84
15x6=90
11x7=77
12x7=84
13x7=91
14 x7=98
15x7=105
11x8=88
12x8=96
13x8=104
14x8=112
15x8=120
11x9=99
12x9=108
13x9=117
14x9=126
15x9=135
11xl0=110
12xl0=120
13xl0=130
14xlO=140
15xl0=150





16x1=1617x1=1718x1=1819x1=1920x1=20
16x2=32
17x2=34
18x2=36
19x2=38
20x2=40
16x3=48
17x3=51
18x3=54
19x3=57
20x3=60
16x4=64
17x4=68
18x4=72
19x4=76
20x4=80
16x5=80
17x5=85
18x5=90
19x5=95
20x5=100
16x6=96
17x6=102
18x6=108
19x6=114
20x6=120
16x7=112
17x7=119
18x7=126
19x7=133
20x7=140
16x8=128
17x8=136
18x8=144
19x8=152
20x8=160
16x9=144
17x9=153
18x9=162
19x9=171
20x9=180
16xl0=160
17xlO=170
18x10=180
19x1O=190
20x10=200





















































0 comments:

Post a Comment

Unordered List

Powered by Jasper Roberts - Blog

Sample Text

Blog Archive

Bank Exam Student. Powered by Blogger.

Social Icons

Followers

Featured Posts

Social Icons

Search This Blog

Pages

Popular Posts

Text Widget